The generator matrix 1 0 0 1 1 1 X 1 X^2+X 1 1 X^2 1 X^2+X X^2+X X^2 1 1 X^2+X 1 1 X^2+X 1 0 1 1 X 1 X^2 1 1 1 0 1 0 X 1 1 1 1 X^2+X 0 X^2 0 1 X^2+X X^2 X^2 1 X X^2 1 1 X^2 1 X 1 1 X X^2+X 1 0 1 0 X^2 X^2+1 1 1 0 0 X^2 X^2+1 1 1 1 X^2+X X X X^2+X+1 1 X^2+X X+1 1 X 1 X^2+X+1 0 1 X^2+X 1 X+1 X^2+1 X+1 1 X 1 1 0 X^2 X X 1 X^2 1 X X^2+X+1 1 X^2+X 1 X 1 1 X^2 X^2+X 1 X^2+X 1 0 X^2+X X^2+X X^2 1 0 0 1 X^2+X+1 X+1 X^2 X^2+1 X 1 1 X^2+1 X X^2+X X+1 1 1 X 1 X X^2 X+1 X^2 1 X^2+X+1 X X^2+1 X^2+X+1 X+1 1 X^2+X 0 0 X^2+1 X^2+X+1 X+1 1 X^2 X X^2+X X^2 X^2+X 1 X^2+X+1 X^2+X 0 0 1 X+1 X^2+1 X^2+X 0 X^2 0 X^2+1 X^2+X X^2+X+1 X^2+X X^2+1 0 1 1 generates a code of length 61 over Z2[X]/(X^3) who´s minimum homogenous weight is 58. Homogenous weight enumerator: w(x)=1x^0+76x^58+92x^59+81x^60+100x^61+50x^62+32x^63+20x^64+20x^65+18x^66+8x^67+4x^68+4x^72+4x^75+1x^76+1x^80 The gray image is a linear code over GF(2) with n=244, k=9 and d=116. This code was found by Heurico 1.16 in 0.0694 seconds.